The Catalytic Subunit of DNA-Dependent Protein Kinase Coordinates with Polo-Like Kinase 1 to Facilitate Mitotic Entry.

نویسندگان

  • Kyung-Jong Lee
  • Zeng-Fu Shang
  • Yu-Fen Lin
  • Jingxin Sun
  • Keiko Morotomi-Yano
  • Debabrata Saha
  • Benjamin P C Chen
چکیده

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is the key regulator of the non-homologous end joining pathway of DNA double-strand break repair. We have previously reported that DNA-PKcs is required for maintaining chromosomal stability and mitosis progression. Our further investigations reveal that deficiency in DNA-PKcs activity caused a delay in mitotic entry due to dysregulation of cyclin-dependent kinase 1 (Cdk1), the key driving force for cell cycle progression through G2/M transition. Timely activation of Cdk1 requires polo-like kinase 1 (Plk1), which affects modulators of Cdk1. We found that DNA-PKcs physically interacts with Plk1 and could facilitate Plk1 activation both in vitro and in vivo. Further, DNA-PKcs-deficient cells are highly sensitive to Plk1 inhibitor BI2536, suggesting that the coordination between DNA-PKcs and Plk1 is not only crucial to ensure normal cell cycle progression through G2/M phases but also required for cellular resistance to mitotic stress. On the basis of the current study, it is predictable that combined inhibition of DNA-PKcs and Plk1 can be employed in cancer therapy strategy for synthetic lethality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Catalytic Subunit of DNA-Dependent Protein Kinase Coordinates with Polo-Like Kinase 1 to Facilitate Mitotic Entry1

Figure S1. Flag-tagged Plk1 or Ku70 were transfected in HeLa cells. Whole cell lysates were immunoprecipitated with flag antibody followed by immunoblotting against indicated proteins.

متن کامل

THE EFFECT OF THEOPHYLLINE ON THE KINETICS OF cAMP-DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT, cAMP, PROTEIN KINASE INHIBITOR AND THEIR RELATIONSHIP IN LUNG TISSUE

We have investigated the effect of theophylline on the kinetics of the catalytic subunit of protein kinase and related factors in lung tissue. The results show that the point of highest concentration of the C subunit of protein kinase which is active in casein phosphorylation is at 3h of incubation time, but in the presence of 100 Ilg/ InL and 10µg/mL theophylline, this is shifted to I.S an...

متن کامل

Polo-like kinase 1 (PLK1) and protein phosphatase 6 (PP6) regulate DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation in mitosis

The protein kinase activity of the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and its autophosphorylation are critical for DBS (DNA double-strand break) repair via NHEJ (non-homologous end-joining). Recent studies have shown that depletion or inactivation of DNA-PKcs kinase activity also results in mitotic defects. DNA-PKcs is autophosphorylated on Ser2056, Thr2647 and Thr2609 in...

متن کامل

Timeless Links Replication Termination to Mitotic Kinase Activation

The mechanisms that coordinate the termination of DNA replication with progression through mitosis are not completely understood. The human Timeless protein (Tim) associates with S phase replication checkpoint proteins Claspin and Tipin, and plays an important role in maintaining replication fork stability at physical barriers, like centromeres, telomeres and ribosomal DNA repeats, as well as a...

متن کامل

Polo-like kinase 1 and Chk2 interact and co-localize to centrosomes and the midbody.

Chk2 is a protein kinase intermediary in DNA damage checkpoint pathways. DNA damage induces phosphorylation of Chk2 at multiple sites concomitant with activation. Chk2 phosphorylated at Thr-68 is found in nuclear foci at sites of DNA damage (1). We report here that Chk2 phosphorylated at Thr-68 and Thr-26 or Ser-28 is localized to centrosomes and midbodies in the absence of DNA damage. In a sea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neoplasia

دوره 17 4  شماره 

صفحات  -

تاریخ انتشار 2015